Parameterized Expectations Algorithm: How to Solve for Labor Easily

نویسندگان

  • LILIA MALIAR
  • SERGUEI MALIAR
چکیده

Euler-equation methods for solving nonlinear dynamic models involve parameterizing some policy functions. We argue that in the typical macroeconomic model with valuable leisure, labor function is particularly convenient for parameterizing. This is because under the labor-function parameterization, the intratemporal first-order condition admits a closed-form solution, while under other parameterizations, there should be a numerical solution. In the context of a simulation-based parameterized expectations algorithm, we find that using the labor-function parameterization instead of the standard consumption-function parameterization reduces computational time by more than a factor of 10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing numerical solutions of models with heterogeneous agents (Model A): a simulation - based parameterized expectations algorithm

In this paper, we describe how to solve Model A (finite number of countries complete markets) of the JEDC project by using a simulation-based Parameterized Expectations Algorithm (PEA). JEL classification : C6; C63; C68; C88

متن کامل

Some New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity

The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...

متن کامل

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions

This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...

متن کامل

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005